Red Means 'Go' to Therapeutic Viruses

Rice University scientists use light to switch viral activity and deliver cargoes to cells

Jo-Carolyn Goode | 12/1/2015, 2:02 p.m.
Light is helping Rice University scientists control both the infectivity of viruses and gene delivery to the nuclei of target ...
Hitting a petri dish of cells that contained a modified virus with patterned red light encouraged gene expression that matched the pattern. The experiment by scientists at Rice University proved the effectiveness of a new gene delivery system that can be controlled with light. (Credit: Eric Gomez/Rice University)

Lead author Eric Gomez, a graduate student in Suh's lab, and co-author Karl Gerhardt, a graduate student in Tabor's lab, demonstrated the technique by activating patterns of AAV-infected cells in petri dishes by shining red light at them through masks.

Suh said the platform may be used in the future to control what cells and tissues express a gene and at what level. The strategy could also find use in tissue-engineering applications like bioscaffolds for implantation. "Here, you might want to coax stem cells to develop into the right cells in some kind of spatially coordinated fashion," she said.

Use in the body is further off, because externally applied red light only goes so far through tissue to reach targets. "Ultimately, it's going to depend on the device you use to deliver the light," she said. "But we imagine cases where you could use a catheter to go to the spot where you want the viruses to be much more infectious."

Suh said the Rice labs are working to make the next generation of capsids both more effective and more deliverable. "This is just the first step," she said. "We have a lot of questions, like ‘Can we really do this in vivo?’ kind of questions.

"There have been a handful of papers trying to make the virus-infectious process responsive to light, but they were before the era of optogenetics," Suh said. "They were using other types of synthetic molecules to make viruses light-responsive.

"It seems using what Mother Nature has already provided in the form of light-responsive proteins works really well for us."

Rice alumnus Justin Judd, now a postdoctoral researcher at the University of California, San Francisco, is co-author of the paper. Suh is an associate professor of bioengineering. Tabor is an assistant professor of bioengineering.

A National Academy of Sciences Ford Foundation Fellowship to Gomez supported the research.

For more information, visit